Magnitude determination for earthquake early warning using P-alert low-cost sensors during 2024 Mw7.4 Hualien, Taiwan earthquake

  1. Shin, T. C. & Teng, T. L. An overview of the 1999 Chi-Chi, Taiwan earthquake. Bull. Seism. Soc. Am. 91, 895–913. https://doi.org/10.1785/0120000738 (2001).
  2. Article  Google Scholar 
  3. Wu, Y. M., Hsiao, N. C. & Teng, T. L. Relationships between strong ground motion peak values and seismic loss during the 1999 Chi-Chi, Taiwan earthquake. Nat. Hazard. 32, 357–373. https://doi.org/10.1023/B:NHAZ.0000035550.36929.d0 (2004).
  4. Article  Google Scholar 
  5. Shih, D. C. F. & Wu, Y. M. Exploring building vibration dynamics in the wake of the Chi-Chi earthquake: Implications for natural hazard preparedness. Nat. Hazard. 120, 12851–12867. https://doi.org/10.1007/s11069-024-06721-y (2024).
  6. Article  Google Scholar 
  7. Wu, Y. M. et al. Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seism. Res. Lett. 87, 1050–1059. https://doi.org/10.1785/0220160058 (2016).
  8. Article  Google Scholar 
  9. Ma, K. F. & Wu, Y. M. Preface to the Focus Section on the 6 February 2018 Mw 6.4 Hualien, Taiwan, earthquake. Seism. Res. Lett. 90, 15–18. https://doi.org/10.1785/0220180356 (2018).
  10. Article  Google Scholar 
  11. Wikipedia. 2024 Hualien Earthquake, https://en.wikipedia.org/wiki/2024_Hualien_earthquake (2024). Accessed January 7 2025.
  12. Chang, J. M., Chao, W. A., Yang, C. M. & Huang, M. W. Coseismic and subsequent landslides of the 2024 Hualien earthquake (M7.2) on April 3 in Taiwan. Landslides 21, 2591–2595. https://doi.org/10.1007/s10346-024-02312-x (2024).
  13. Article  Google Scholar 
  14. Alcik, H., Ozel, O., Apaydin, N. & Erdik, M. A study on warning algorithms for Istanbul earthquake early warning system. Geophys. Res. Lett. 36, L00B05. https://doi.org/10.1029/2008GL036659 (2009).
  15. Article  Google Scholar 
  16. Lee, W. H. K. & Wu, Y. M. Earthquake Monitoring and Early Warning Systems. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 2496–2530 (Springer, New York, 2009).
  17. Chapter  Google Scholar 
  18. Nakamura, Y., Saita, J. & Sato, T. On an earthquake early warning system (EEW) and its applications. Soil Dyn. Earthquake Eng. 31, 127–136. https://doi.org/10.1016/j.soildyn.2010.04.012 (2011).
  19. Article  Google Scholar 
  20. Satriano, C., Wu, Y. M., Zollo, A. & Kanamori, H. Earthquake early warning: Concepts, methods and physical grounds. Soil Dyn. Earthq. Eng. 31, 106–118. https://doi.org/10.1016/j.soildyn.2010.07.007 (2011).
  21. Article  Google Scholar 
  22. Wu, Y. M., Shin, T. C. & Tsai, Y. B. Quick and reliable determination of magnitude for seismic early warning. Bull. Seism. Soc. Am. 88, 1254–1259. https://doi.org/10.1785/BSSA0880051254 (1998).
  23. Article  Google Scholar 
  24. Wu, Y. M. et al. Development of an integrated seismic early warning system in Taiwan. Terr. Atmos. Ocean. Sci. 10, 719–736. https://doi.org/10.3319/TAO.1999.10.4.719(T) (1999).
  25. Article  Google Scholar 
  26. Wu, Y. M. & Teng, T. L. A virtual subnetwork approach to earthquake early warning. Bull. Seism. Soc. Am. 92, 2008–2018. https://doi.org/10.1785/0120010217 (2002).
  27. Article  Google Scholar 
  28. Hsiao, N. C. The application of real-time strong-motion observations on the earthquake early warning in Taiwan (in Chinese with English abstract), Ph.D. thesis, 178 (Inst. of Geophys. Natl. Cent. Univ., Taiwan. 2007).
  29. Hsiao, N. C., Wu, Y. M., Shin, T. C., Zhao, L. & Teng, T. L. Development of earthquake early warning system in Taiwan. Geophys. Res. Lett. 36, L00B02. https://doi.org/10.1029/2008GL036596 (2009).
  30. Article  Google Scholar 
  31. Chen, D. Y., Hsiao, N. C. & Wu, Y. M. The Earthworm based earthquake alarm reporting system in Taiwan. Bull. Seism. Soc. Am. 105, 568–579. https://doi.org/10.1785/0120140147 (2015).
  32. Article  Google Scholar 
  33. Wu, Y. M., Mittal, H., Chen, D. Y., Hsu, T. Y. & Lin, P. Y. Earthquake early warning systems in Taiwan: Current status. J. Geol. Soc. India 97, 1525–1532. https://doi.org/10.1007/s12594-021-1909-6 (2021).
  34. Article  Google Scholar 
  35. CWA. Central Weather Administration News. https://www.cwa.gov.tw/Data/service/Newsbb/CH/Newsbb_20240403225329.pdf. (2024a). Accessed 7 January 2025.
  36. Cheloni, D., Famiglietti, N. A., Caputo, R., Tolomei, C. & Vicari, A. A composite fault model for the 2024 MW 7.4 Hualien earthquake sequence in eastern Taiwan inferred from GNSS and InSAR data. Geophys. Res. Lett. 51, e2024GL110255. https://doi.org/10.1029/2024GL110255 (2024).
  37. Article  Google Scholar 
  38. USGS. M 7.4 – 15 km S of Hualien City, Taiwan, https://earthquake.usgs.gov/earthquakes/eventpage/us7000m9g4/executive. (2024). Accessed July 31 2024.
  39. CWA. Central Weather Administration earthquake Report. https://scweb.cwa.gov.tw/en-us/earthquake/data (2024b). Accessed 7 January 2025.
  40. NTCP. New Taipei City Government News Report. https://www.ntpc.gov.tw/ch/home.jsp?id=e8ca970cde5c00e1&dataserno=d7e2181a099b0d790b20f88d208e64eb# (2024). Accessed January 7 2025.
  41. NCDR. National Science and Technology Center for Disaster Reduction Report. https://den1.ncdr.nat.gov.tw/1330/1334/1335/17836/17849/ (2024). Accessed January 7 2025.
  42. Song, G.Y. et al. Application of SeisComP at the Central Weather Administration (CWA) for Earthquake Monitoring and Early Warning: A Case Study of the 2024 ML 7.2 Hualien, Taiwan, Earthquake Sequence. In EGU General Assembly Conference Abstracts, 2025-May, EGU25-5275. 10.5194/egusphere-egu25-5275 (2025).
  43. Wu, Y. M. et al. A high-density seismic network for earthquake early warning in taiwan based on low cost sensors. Seism. Res. Lett. 84, 1048–1054. https://doi.org/10.1785/0220130085 (2013).
  44. Article  Google Scholar 
  45. Wu, Y.-M. & Lin, T.-L. A Test of Earthquake Early Warning System Using Low Cost Accelerometer in Hualien, Taiwan. In Early Warning for Geological Disasters: Scientific Methods and Current Practice (eds Wenzel, F. & Zschau, J.) 253–261 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014). https://doi.org/10.1007/978-3-642-12233-0_13.
  46. Chapter  Google Scholar 
  47. Wu, Y. M. et al. Performance of a low-cost earthquake early warning system (P-Alert) and shake map production during the 2018 Mw 6.4 Hualien, Taiwan earthquake. Seism. Res. Lett. 90, 19–29. https://doi.org/10.1785/0220180170 (2019).
  48. Article ADS  Google Scholar 
  49. Wu, Y. M. Progress on development of an earthquake early warning system using low-cost sensors. Pure Appl. Geophys. 172, 2343–2351. https://doi.org/10.1007/s00024-014-0933-5 (2015).
  50. Article ADS  Google Scholar 
  51. Yang, B. M., Mittal, H. & Wu, Y. M. Real-time production of PGA, PGV, intensity, and Sa Shakemaps using dense MEMS-based sensors in Taiwan. Sensors 21, 943. https://doi.org/10.3390/s21030943 (2021).
  52. Article ADS PubMed PubMed Central  Google Scholar 
  53. Mittal, H., Yang, B. M., Tseng, T. L. & Wu, Y. M. Importance of real-time PGV in terms of lead-time and shakemaps: Results using 2018 ML 6.2 & 2019 ML 6.3 Hualien Taiwan earthquakes. J. Asian Earth Sci. 220, 104936. https://doi.org/10.1016/j.jseaes.2021.104936 (2021).
  54. Article  Google Scholar 
  55. Mittal, H., Yang, B. M. & Wu, Y. M. Progress on the earthquake early warning and shakemaps system using low-cost sensors in Taiwan. Geosci. Lett. 9, 42. https://doi.org/10.1186/s40562-022-00251-w (2022).
  56. Article ADS  Google Scholar 
  57. Hsiao, N. C. et al. A new prototype system for earthquake early warning in Taiwan. Soil Dyn. Earthquake Eng. 31, 201–208. https://doi.org/10.1016/j.soildyn.2010.01.008 (2011).
  58. Article  Google Scholar 
  59. Nakamura, Y. On the urgent earthquake detection and alarm system (UrEDAS). Proc. of the 9th World Conference on Earthquake Engineering 7, 673–678 (1988).
  60. Kanamori, H. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 33, 195–214. https://doi.org/10.1146/annurev.earth.33.092203.122626 (2005).
  61. Article ADS CAS  Google Scholar 
  62. Wu, Y. M. & Zhao, L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys. Res. Lett. 33, 16. https://doi.org/10.1029/2006GL026871 (2006).
  63. Article CAS  Google Scholar 
  64. Wu, Y. M. & Kanamori, H. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bull. Seism. Soc. Am. 95, 1181–1185. https://doi.org/10.1785/0120040193 (2005).
  65. Article  Google Scholar 
  66. Wu, Y. M., Kanamori, H., Allen, R. M. & Hauksson, E. Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophys. J. Int. 170, 711–717. https://doi.org/10.1111/j.1365-246X.2007.03430.x (2007).
  67. Article ADS  Google Scholar 
  68. Allen, R. M. & Kanamori, H. The potential for earthquake early warning in southern California. Science 300, 786–789. https://doi.org/10.1126/science.1080912 (2003).
  69. Article ADS CAS PubMed  Google Scholar 
  70. Yamada, M. & Mori, J. Using τc to estimate magnitude for earthquake early warning and effects of near-field terms. J. Geophys. Res. 114, B05301. https://doi.org/10.1029/2008JB006080 (2009).
  71. Article ADS  Google Scholar 
  72. Zollo, A., Amoroso, O., Lancieri, M., Wu, Y. M. & Kanamori, H. A threshold-based earthquake early warning using dense accelerometer networks. Geophys. J. Int. 183, 963–974. https://doi.org/10.1111/j.1365-246X.2010.04765.x (2010).
  73. Article ADS  Google Scholar 
  74. Zollo, A., Lancieri, M. & Nielsen, S. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophys. Res. Lett. 33, L23312. https://doi.org/10.1029/2006GL027795 (2006).
  75. Article ADS  Google Scholar 
  76. EPRI A criterion for determining exceedance of the operating basis earthquake. Electric Power Research Institute, Palo Alto, CA, prepared by Jack R. Benjamin and Associates, Inc., Report No:NP-5930. https://www.osti.gov/biblio/6968267 (1988).
  77. Erdik, M. et al. Istanbul earthquake rapid response and the early warning system. Bull. Earthquake Eng. 1, 157–163. https://doi.org/10.1023/A:1024813612271 (2003).
  78. Article  Google Scholar 
  79. Wu, Y. M. & Teng, T. L. Near real-time magnitude determination for large crustal earthquakes. Tectonophysics 390, 205–216. https://doi.org/10.1016/j.tecto.2004.03.029 (2004).
  80. Article ADS  Google Scholar 
  81. Kramer, S. L. & Mitchell, R. A. Ground motion intensity measures for liquefaction hazard evaluation. Earthq. Spectra 22, 413–438. https://doi.org/10.1193/1.2194970 (2006).
  82. Article  Google Scholar 
  83. Huang, H.Y. & Wu, Y.M. Magnitude Estimation and Onsite Earthquake Early Warning using Cumulative Absolute Velocity in Taiwan. EGU General Assembly Conference Abstracts, 2021-April, EGU21-8570. 10.5194/egusphere-egu21-8570 (2021).
  84. Wu, Y. M., Mittal, H., Lin, Y. H. & Chang, Y. H. Magnitude determination using cumulative absolute absement for earthquake early warning. Geosci. Lett. 10, 59. https://doi.org/10.1186/s40562-023-00314-6 (2023).
  85. Article ADS  Google Scholar 
  86. Wu, Y.M. Cumulative absolute absement for magnitude determination in earthquake early warning system using low-cost sensors. In EGU General Assembly Conference Abstracts, 2024-Mar, EGU24-2969. 10.5194/egusphere-egu24-2969 (2024).
  87. Allen, R. V. Automatic earthquake recognition and timing from single traces. Bull. Seism. Soc. Am. 68, 1521–1532. https://doi.org/10.1785/BSSA0680051521 (1978).
  88. Article  Google Scholar 
  89. Wu, Y. M. & Kanamori, H. Experiment on an onsite early warning method for the Taiwan early warning system. Bull. Seism. Soc. Am. 95, 347–353. https://doi.org/10.1785/0120040097 (2005).
  90. Article  Google Scholar 
  91. Wu, Y. M., Yen, H. Y., Zhao, L., Huang, B. S. & Liang, W. T. Magnitude determination using initial P waves: A single-station approach. Geophys. Res. Lett. 33, L05306. https://doi.org/10.1029/2005GL025395 (2006).
  92. Article ADS  Google Scholar 
  93. Yang, B. M., Huang, T. C. & Wu, Y. M. ShakingAlarm: A non-traditional regional earthquake early warning system based on time-dependent anisotropic peak ground motion attenuation relationships. Bull. Seism. Soc. Am. 108, 1219–1230. https://doi.org/10.1785/0120170105 (2018).
  94. Article  Google Scholar 
  95. Kodera, Y. et al. The propagation of local undamped motion (PLUM) method: A simple and robust seismic wavefield estimation approach for earthquake early warning. Bull. Seism. Soc. Am. 108, 983–1003. https://doi.org/10.1785/0120170085 (2018).
  96. Article  Google Scholar 
  97. Jan, J. C., Huang, H. H., Wu, Y. M., Chen, C. C. & Lin, C. H. Near-real-time estimates on earthquake rupture directivity using near-field ground motion data from a dense low-cost seismic network. Geophys. Res. Lett. 45, 7496–7503. https://doi.org/10.1029/2018GL078262 (2018).
  98. Article ADS  Google Scholar 

Leave a Reply

Your email address will not be published. Required fields are marked *